TEK: Internet Search System for Low-Connectivity Communities

Saman Amarasinghe
Bill Thies

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
TEK Team

• Current
 - Saman Amarasinghe
 - Bill Thies

• Previous participants
 - Libby Levison (PI)
 - Samidh Chakrabarti
 - Tazeen Mahtab
 - Genevieve Cuevas
 - Saad Shakhshir
 - Janelle Prevost
 - Mark Halsey
 - Marjorie Cheng
 - Hongfei Tian
 - Damon Berry
 - Bihn Vo
 - Sheldon Chan
 - Sid Henderson
 - Alejandro Artola
Internet Users Worldwide

Percentage of Country’s Population Online

Share of World’s Internet Users

Copyright 2004, Matthew Zook. Data Source: ClickZ Stats.
Barriers to Internet Access

• Infrastructure
 - Limited phone lines
 - Low-bandwidth international links
 - Unreliable power supplies

• High costs
 - Computer unaffordable or unavailable
 - ISP, telephone costs can exceed local wage
 - Exacerbated by slow connections

• Social barriers
 - Illiterate or non-technical users
 - Lack of local content
Cost of Dial-up Internet Access as a Fraction of Household Income

- Monthly Internet access: 30 hours
 - Or unlimited rate (if cheaper)
- Monthly household income derived from GNP per capita
 - Ignore richest 20% of population
 - Household size: 2.5

Cost of Dial-up Internet Access as a Fraction of Household Income

- Monthly Internet access: 30 hours
 - Or unlimited rate (if cheaper)
- Monthly household income derived from GNP per capita
 - Ignore richest 20% of population
 - Household size: 2.5

Cost of Dial-up Internet Access as a Fraction of Household Income

- Monthly Internet access: 30 hours
 - Or unlimited rate (if cheaper)
- Monthly household income derived from GNP per capita
 - Ignore richest 20% of population
 - Household size: 2.5

Solution has two components:

1. Transfer all data through email, not http
 - Connect only to send/receive email, not to browse web

2. TEK Server optimizes for bandwidth requirements

TEK: “Time Equals Knowledge”
Outline

• TEK System
• Usage Scenarios
• Optimizing for Bandwidth
Outline

• TEK System
• Usage Scenarios
• Optimizing for Bandwidth
TEK Client

- Implemented as an HTTP Proxy Server bundled with a custom version of Firefox

- When offline, users can:
 - Search and browse old results as if connected
 - Enqueue queries for new results or missing pages

- When online, users can:
 - Send pending queries
 - Receive new results (attached to standard emails)
TEK Server

- Queries Google for relevant pages
- Returns filtered content of ~20 pages to user
 - Remove images
 - Remove junk HTML (JavaScript, colors, meta tags, etc.)
 - Uses loband library for page simplification (loband.org)
 - Convert PDF, PS to HTML (uses pdftohtml)
- Maintain server image of client page cache
 - Avoid sending duplicate pages
- Compress pages, send as single attachment
 - Limit attachment size to 150K (or smaller, for some users)
Pending queries (2)

<table>
<thead>
<tr>
<th>Query</th>
<th>Refine</th>
<th>No results yet</th>
</tr>
</thead>
<tbody>
<tr>
<td>"global warming"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>penicillin allergy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Returned queries (6)

<table>
<thead>
<tr>
<th>Query</th>
<th>Refine</th>
<th>Delete</th>
<th>Results</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>taro disease</td>
<td></td>
<td></td>
<td>59</td>
<td>New!</td>
</tr>
<tr>
<td>aids symptoms</td>
<td></td>
<td></td>
<td>39</td>
<td>New!</td>
</tr>
<tr>
<td>seaweed farming</td>
<td></td>
<td></td>
<td>20</td>
<td>Jul 9</td>
</tr>
<tr>
<td>hiv diagnosis</td>
<td></td>
<td></td>
<td>34</td>
<td>Jul 8</td>
</tr>
<tr>
<td>aids prevention</td>
<td></td>
<td></td>
<td>40</td>
<td>Jul 8</td>
</tr>
</tbody>
</table>

© MIT TEK & Scirus 2005
60 Results
Sort by: best results | newest results

1. HIV symptoms and information on treatment and s...
 http://www.managinghiv.com/

2. HIV/AIDS Prevention
 http://www.avert.org/hivprevention.htm

3. HIV/AIDS - aids, hiv, aids symptoms, hiv testin...
 http://bc.us.yahoo.com/b?P=Si2FO9htdWIN0BF962aNV...

 http://mv.webmd.com/content/nages/11/1624_50945....
Testing Positive for Aids/HIV

From Tracee Comforth, Your Guide to Women's Health.
FREE Newsletter. Sign Up Now!

What does testing positive for HIV mean? What is meant by the window period? How does a false positive relate to it?

A window period is a recommended waiting period to receive an accurate HIV test result. Generally, it is a six-week to six-month period from the moment of your last unsafe sex encounter to the moment that you receive a HIV screening. This is the time your body uses to create antibodies in the blood stream, which signify exposure to HIV. This process is known as seroconversion.

It is important when receiving an HIV test to ask what kind of test is being used. Whenever someone is screened for HIV, two types of tests are used. They are, 1) a reactive test, and 2) a confirmatory test. A reactive HIV test indicates if HIV antibodies are in the blood (such as the Elisa Test). A reactive test may give a false positive reading to
TEK Rationale I: More Affordable

- Email accounts cheaper than web access
TEK Rationale I: More Affordable

- Email accounts cheaper than web access
 - Some infrastructures support email only
TEK Rationale I: More Affordable

- Email accounts cheaper than web access
 - Some infrastructures support email only
- Can send/receive all queries at night

<table>
<thead>
<tr>
<th>Country</th>
<th>Daytime Cost</th>
<th>Nighttime Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakistan</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Nigeria</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Nepal</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Georgia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Macedonia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Romania</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Austria</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ecuador</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Colombia</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Vietnam</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
TEK Rationale I: More Affordable

• Email accounts cheaper than web access
 - Some infrastructures support email only
• Can send/receive all queries at night
• Connection time is shorter
 - Avoids reading pages online
 - Content direct from ISP, not distant server
 - Server compression shrinks results
TEK Rationale II: More Usable

- Viewing results offline: quick, reliable
 - Establish local database of shared information
- In school: time-share Internet line with voice
 - Reduced time online makes Internet viable
- Manageable amount of information
Outline

• TEK System
• Usage Scenarios
• Optimizing for Bandwidth
Deployment Status

• TEK available on SourceForge and via free CD
• Released summer 2002, but still expanding
 - Implementing new user interface
 - Partnering with Elsevier Scirus search engine for wide deployment to libraries, institutions
 - In discussions with Google
• Most active users in partner organizations
People’s First Network

- Solomon Islands served by HF Radio Network
- Email only

Source: http://www.peoplefirst.net.sb/General/PFnet_Update.htm
People’s First Network

• TEK installed: $0.65 per query from kiosk
 - $1.30 / hour for operator assistance browsing results
 - Compare to $0.25 per email, $0.65 to type one page
 - Contributes to kiosk sustainability

• Many applications reported
 1. Farmers - information on diseases; networking

Subsistence farmers on Rennell have obtained advice concerning taro diseases affecting their crop. Via the 'TEK-websearch' facility, one group of farmers was able to access detailed technical information about vanilla farming and to communicate with a specialist from the Kastom Gaden Association. -- Chand et al., PFNet Case Study, 2005

2. Teachers - environmental impact of local logging
3. Pastors - downloading sermons
4. Entrepreneurs - download / sell lyrics
5. General - health, education, sports, entertainment
First Mile Solutions

- Store-and-forward connectivity via Mobile Access Point
 - Cambodia, Rwanda, Costa Rica, India
- TEK provides only Web access

Source: www.firstmilesolutions.com
Outline

• TEK System
• Usage Scenarios
• Optimizing for Bandwidth
Low-Bandwidth Search is Different

<table>
<thead>
<tr>
<th></th>
<th>Real-time Search</th>
<th>Email-based Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable Latency</td>
<td>1-2 seconds</td>
<td>minutes/hours</td>
</tr>
<tr>
<td>Optimization Metric</td>
<td>relevance per page</td>
<td>relevance per byte</td>
</tr>
<tr>
<td>Search Process</td>
<td>trial-and-error</td>
<td>careful</td>
</tr>
<tr>
<td>User Identity</td>
<td>unknown</td>
<td>email address</td>
</tr>
</tbody>
</table>
State-Based Compression

• Cheaper to store information than re-download it
 - 100 GB disk drive: $250
 - 100 GB at 56kbs, $1/hr: $4000

• If server knows everything stored on client, can it improve compression of search results?
State-Based Compression

• General problem:
 If two parties share a large dictionary, can they reduce communication bandwidth?

 • In general: no
 - info content (index) = info content (entry)

 • In practice: maybe
 - Space of inputs is not uniformly populated
 - E.g., many images are text, bullets, smileys, patterns
 - Lossy: send index of closest match in dictionary
 - Lossless: send exact diff from dictionary entry
Photo Mosaics

• Mosaic: picture made of other pictures

1. Break image into cells
2. Match each cell against image library
 • Use wavelet decomposition for perceptual match
Mosaic Compression (Samidh Chakrabarti 2002)

• Idea: server constructs mosaic from client images
 - Send pointers to image components, not image data

• Image size (bits): \#cells * \log_2 (library_size)
 - Gzip offers further savings

• Possible image libraries
 - Images previously downloaded by client
 - Pre-defined library
Experiments

• Setup
 - 4096 images from Wikipedia
 - Cell size: 12x12 pixels
 - PhotoMosaic software (BlackDog, shareware)
 • Touch-up features disabled

• Processing time
 - ~20 minutes to analyze library
 - ~1 minute to build mosaic
Compressing Landscapes

JPEG Image: 52 Kb

Mosaic: 1.6 Kb
(33X smaller)
Compressing Landscapes

23X Smaller GIF: 1.6 Kb

Mosaic: 1.6 Kb
Importance of Small Images

- Most bandwidth spent on small images!

![Fraction of Total Bandwidth vs. File Size](image)

- Source: Chakrabarti’02
- 42,684 images from sites in Google programming contest
- 5,540 images from 1,000 most popular sites (ZDNet)

60% of bandwidth on images < 10Kb

→ Text recognition?
→ Icon substitution?
What’s the Verdict?

• Many avenues for improvement
 - What is the best image library?
 - Impact of smoothing, rotation, diffs?
 - Edge detection + texture mapping
 • Lossy compression of edges
 • Random noise for realism

• In current form, perhaps useful as a preview
 - 5-33X smaller than JPEG
 - More entertaining than ALT tag or blurry picture
2. Breaking the URL Abstraction

• Entire webpage is unlikely to be useful
• Alternate abstractions for search engines:
 - Document sections ()
 - Paragraphs
 - Tables
 - PDF Bookmarks
• If low bandwidth,
 Extract relevant content and return to user
• If high bandwidth,
 Jump* to relevant portion

* may require cached version or HTML / browser extensions
3. Client-Specific Pagerank
(ala Google Personalized)

- Ambiguous searches have clusters of results
 - “Mercury” - element, planet, car, or Roman God?
 - High-bandwidth users do iterative searches
 - Low-bandwidth users can’t afford many iterations
 - And often lack skills to eliminate spurious hits

- Idea: select pages based on client profile
 - Geography, demographics, previous searches
 - “Java history” from Indonesia → history of island
 - “GDP” after biology queries → guanine diphosphate

- Pagerank: boost links from user’s demographic
Future Work: Smart Query Builder

• Spelling error is costly for email-based search
• Client interface should:
 - Check spelling
 - Anticipate number of results
 - Identify ambiguous queries
• New opportunity for advanced query building
 - E.g., users willing to categorize searches
• New opportunity for evaluating search results
 - Users willing to provide careful feedback
 - Research vehicle for IR and UI testing
Conclusion

• High demand for low-bandwidth search
 - Today: emerging Internet users worldwide, PDAs
 - Future: pervasive computing, space exploration

• Much room for technical innovation
 - State-based compression

• Prototype systems have proven useful
 - TEK, EmailWeb, www4mail, loband
 - Robust, visible service could have large impact